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WHIRL AND WHIP - ROTOR/BEARING STABILITY PROBLEMS
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A mathematical model of a symmetric rotor supported by one rigid and one fluid lub-
ricated bearing is proposed in this paper. The rotor model is represented by gener-
alized (modal) parameters of its first bending mode. The rotational character of
the bearing fluid force is taken into account. The model yields synchronous vibra-
tions due to rotor unbalance as a particular solution of the equations of motion,
rotor/bearing system natural frequencies and corresponding self-excited vibrations
known as "oil whirl" and "oil whip." The stability analysis yields rotative speed
threshold of stability. The model also gives the evaluation of stability of the
rotor synchronous vibrations. 1In the first balance resonance speed region two more
thresholds of stability are yielded. The width of this stability region is directly
related to the amount of rotor unbalance.

The results of the analysis based on this model stand with very good agreement
with field observations of rotor dynamic behavior and the experimental results.

1. INTRODUCTION

Dynamic phenomena induced by interaction between the rotor and bearing or seal fluid
motion and creating severe rotor vibrations have been recognized for over 50 years.
High amplitude shaft vibrations which can sustain over a wide range of rotational
speeds not only perturb the normal operation of a rotating machine, but may also
cause serious damage to the machine and the entire plant.

Literature related to rotor/bearing and rotor/seal phenomena is very rich [1-7].
Availability of computers and fast development of numerical methods are bringing

more and more results based on analytical models of the solid/fluid interaction
phenomena.

There is still, however, a big gap between theory and practice.

Practical rotating machinery instability problems in the field are being corrected
ad hoc by applying trial and error approach with a number of measures such as
increasing rotor radial load, modifying 1lubricant temperature and/or pressure,
shortening and stiffening the shaft, or replacing bearings or seals with "more
stable" ones. However, the only measure which corrects the causative agent is the
recently introduced anti-swirling technique.

Researchers and engineers do not always agree upon the physical description of the
shaft/bearing or shaft/seal solid/fluid interaction dynamic phenomena. The complex-
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ity of these phenomena and the long list of factors affecting them make the picture
tremendously obscure.

Most often bearing and/or seal fluid forces generated during rotating machine opera-
tion are considered separately from the shaft motion, assuming only that the shaft
rotates with constant angular velocity and has a perfect geometry.

Practically observed phenomena indicate that this approach can be justified only for
specific conditions, in particular, for low values of shaft rotative speed. In most
other cases, rotor and bearings (or rotor/bearings/seals) should be considered as a
system. The dynamic behavior of this system will then reflect the rotor/bearing
coupled system features.

In this paper, an attempt to build a simple rotor/bearing system model is made. The
simplicity allows for obtaining analytical solutions and yields clear conclusions on
how various parameters of the rotor/bearing system affect its dynamic behavior.
The model 1is based on modal behavior of the rotor. The model of bearing fluid
dynamic forces is developed through a classical approach applied to nonconservative
mechanical systems [8].

The model yields results which are in perfect agreement with the observed dynamic
phenomena of the rotor/bearing system.

2. OBSERVED VIBRATIONAL PHENOMENA

Lightly loaded and slightly unbalanced symmetrical rotors rotating in fluid 360°
lubricated cylindrical bearings, exhibit the following dynamic phenomena:

(i) When the shaft starts rotating with a slowly increasing rotative speed,
SYNCHRONQUS (1x) 1lateral vibrations with minor amplitudes are observed all along
the rotor axis. These vibrations are caused by the inertia forces of unbalance of
the rotor. At low rotative speeds, these vibrations are stable, an impulse perturb-
ation of the rotor causes a short time transient vibration process, and the same
vibration pattern is reestablished (Fig. 1).

(ii) At higher rotational speeds (usually below the first balance resonance),
the forced synchronous vibration is not the only regime of vibration. Along with 1x
vibrations, OIL WHIRL appears. 0i1 whirl is the rotor lateral forward precessional
subharmonic vibration around the bearing center at a frequency close to half the
rotative speed. In this range of the rotative speed, the rotor behaves as a rigid
body. The amplitudes of 0il whirl are usually much higher than those of synchronous
vibrations; they are, however, limited by the bearing clearance and the fluid non-
linear forces. With increasing rotative speed, the pattern of vibration remains
stable. The o0il whirl "half" frequency follows the increasing rotative speed, main-
taining the #1/2 ratio with it. The vibration amplitudes remain nearly constant and
usually high. At the bearing, the vibration amplitude may cover nearly all bearing
clearance. In the considered range of rotative speed, the bearing fluid dynamic
effects clearly dominate. The forced synchronous vibration represents a small frac-
tion of vibration response, as the spectrum indicates (Fig. 1).
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(iii) When the increasing rotative speed approaches the first balance resonance,
i.e., the first natural frequency of the rotor, oil whirl suddenly becomes unstable
and disappears, being suppressed and replaced by increasing SYNCHRONOUS vibrations.
The forced vibrations dominate, reaching the highest amplitudes at resonant fre-
quency corresponding to the mass/stiffness/damping properties of the rotor. The
bearing fluid dynamic effects now yield priority to the elastic rotor mechanical
effects.

(iv) Above the first balance resonance speed, the synchronous forced vibrations
decay. Again, the bearing-fluid forces come back into action. With increasing
rotative speed, shortly after the first balance resonance, QIL WHIRL occurs again.
The previously described pattern repeats. The width of the rotative speed region in
which the synchronous vibration dominate depends directly on the amount of rotor
unbalance: higher unbalance, wider is this region.

(v) When the rotative speed approaches double the value of the rotor first
balance resonance, the half-speed oil whirl frequency reaches the value of the first
balance resonance -- the first natural frequency of the rotor. The oil whirl pat-
tern is replaced by OIL WHIP -- a lateral forward precessional subharmonic vibration
of the rotor. 01l whip has a constant frequency: independently of the rotative
speed increase, the oil whip frequency remains close to the first natural frequency
of the rotor. In this range of high rotative speed, the shaft cannot be considered
rigid. Its f]exibi]ity, i.e., additional degrees of freedom, causes that rotor/
bearing system is closely coupled. The rotor parameters (its mass and stiffness, in
particuiar) become the dominant dynamic factors. The amplitude of oil-whip journal
vibration’ is limited by the bearing clearance, but the shaft vibration may become
verg high, as the shaft vibrates at its natura] frequency, i.e., in the resonant
conditions.

In various machines furnished with fluid lubricated bearings and/or seals, the
above-described phenomena may take various forms, as other external factors may
affect the system dynamic behavior. Generally, however, similar patterns can be
expected [9].

Among the described dynamic phenomena, there is a clear distinction related to their
nature: (a) rotor synchronous lateral vibration (1x) due to unbalance and (b)
rotor fluid-related vibration. The first type is typically forced vibration. The
rotating periodic inertia force considered "external" to rotor lateral motion causes
the rotor response with the same frequency. The resulting motion has the form of
the classical synchronous (1x) excited vibration.

As there is no other external force to excite the vibrations, it is quite reasonable -
to refer to the second type of vibration, as SELF-EXCITED vibrations, occurring due
to an internal feedback mechanism transferring the rotative energy into vibrations.
Self-excited vibrations cannot occur in a conservative or "passive" structure, with
no energy supply (in nonrotating systems in particular). In passive structures, the
free vibrations following an external perturbing impulse usually have a decaying
character, due to the stabilizing effect of damping, naturally existing in the sys-
tem. Another situation takes place if the system is subject to a constant supply of
energy (an "active", nonconservative structure). Well recognized are wind induced
vibrations known as flutter. The rotating machine belongs also to this category.
The internal energy transfer mechanism, in this case a bearing fluid involvement in
motion, uses a part of the rotative energy to create forces, having the direction
opposite to the damping force. The result consists of reduction, then with their
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increasing value, a nullification of effective damping, the stabilizing factor. In
such conditions, free vibrations do not have the decaying character anymore (effect
of negative damping). While vibration amplitude increases, nonlinear factors become
significant and eventually amplitudes are limited. Vibrations become periodic with
a constant amplitude. The stable 1limit cycle is reached. This represents the
practically observed case of the oil whirl and oil whip. As the oil whirl and oil
whip occur in the system having a constant energy supply, the resulting vibration is
referred to as self-excited. The last term is also closely related to the nonlinear
character of the phenomena. In particular, the size of the oil whirl/whip orbits
(1imit cycle vibration amplitudes) are determined exclusively by the nonlinear
factors in the oil bearing.

Simple linear modelization of the rotor/bearing system can be applied as a first
approximation in mathematical description of the observed phenomena. The linear
model provides the spectrum of natural frequencies of the system, as these frequen-
cies are very insensitive to nonlinear factors. The 1linear model also gives the
evaluation of stability threshold, closely related to the delicate balance between
the system's natural damping and the bearing fluid forces acting in antiphase and
opposing damping.

Very often o0il whirl and oil whip are described as "unstable" rotor motion in a
sense which is rather close to the terms "undesirable" or "unacceptable" rotor
vibrations. Obviously, o0il whirl/whip vibrations are highly undesirable; they dis-
turb the machine's normal operation. The "normal operation" is related to the pure
rotational motion of the rotor, around the proper axis and following a suitable
angular speed. This is the oniy regime of motion which is required. The occurrence
of the 0il whirl/whip vibrations signifies that this pure rotational regime becomes
UNSTABLE*, and the oil whirl/whip vibrations represent a STABLE regime. The term
"stability" is used here in the most popular sense (following Lyapunov's defini-
tion). The pure rotational motion (meaning zero lateral vibration) is unstable, oil
whirl/whip lateral vibrations are stable. They exist, and any impulse perturbation
cannot significantly modify their pattern. After a short-time transient process,
the oil whirl/whip pattern is reestablished.

A practical stability definition for a rotating machine is discussed in [10].

3. FLUID FORCES

Derivation of fluid forces in a bearing (or a seal) is based on the consideration
that the fluid rotation (dragged into motion by shaft rotation) plays an appreciable
role in resulting dynamic phenomena and may, therefore, have a significant effect on
rotor vibrations [8, 11, 12].

In the following presentation, an assessment of this effect is attempted in simpli-
fied terms. It is assumed that when the shaft is rotating centered, fully developed
fluid flow is established in the circumferential direction, that is, on the average,
the fluid is rotating at the rate Aw, where Wp is the shaft rotative speed and A is
the fluid average swirling ratio wh?ch value” is close to a half (Fig. 2). It is

* Actually, with existing residual imbalance, the rotor pure rotational motion of
a rotor does not exist. The only regime is forced synchronous lateral vibration
along with the rotation. "Stability" refers then to the stability of this regime.
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supposed that shaft lateral vibrations are small enough to make modifications of
this pattern negligible. The flow axial component is supposed to affect values of
the fluid forces in the x,y plane in a parametric way only, i.e., the fluid circum-
ferential force may proportionally increase with increasing axial flow. However, it
is assumed that there is no feedback, i.e., the fluid axial motion is uncoupled from
the circumferential motion (and not investigated in this paper). It is also assumed
that the axial flow does not modify the average swirling ratio A.

The vital assumption is that the fluid force which results from averaging the cir-
cumferential flow is rotating with angular velocity Aw,. In rotating reference
coordinates x_, y. (Fig. 2), the average fluid flow is purely rectilinear and the
fluid force id as Follows:

F = (Kot (12,1 z,, + [D4(12,1)] 2, + M2, =

where z = x_+ jy, j=4J1 lz.I = 4X§+Y§

In the equation (1) Ky, D, and M. are fluid stiffness, damping and inertia coeffic-
jents respectively. §; and Yo arg nonlinear functions of the radial displacement
lz.l. It is assumed that these functions have analytical character (or at least are
continuous, with continuous first two derivatives). Later on, as an example, the
following nonlinear functions will be analyzed (the first symmetric term of the
Taylor series for any nonlinear analytical function):

Y1,2 = By,2lz ]2, (2)
where B, and B, are positive constants.

The average fluid force (1) has, therefore, nonlinear character. Stiffness and
damping components of the fluid force increase with increasing journal eccentricity.

gn fixed reference coordinates x,y (Fig. 2), the fluid force will have the following
orm:

F = [Kotpa(121)] z + [D+p(121)] (2-jhusgz) + Mc(Z-25Mup2-A2u2z) (3)
jaw t
where z = x+jy , |z] = JX2+y2. The equation z = ze R represents transformation

of coordinates.

‘The fluid force (3) can be presented in a classical "bearing coefficient" format:

-t - - .

| Fy 0 MfJ V} -ZAwRMf | Dlly -AwRD Ko-AzwﬁMf y
w0z) 0 [ x] [wiCz)  AwgeCzD] x
+ +

0 w(lz) || ¥ L-meuzuzn) vzl || v

The last two matrices contain nonlinear components of the fluid force. As it is
easily noticed, the fluid force is supposed to have a symmetric character: the di-
agonal terms are identical, the off-diagonal terms are skew symmetric. More impor-
tant, however, is the fact that the off-diagonal terms are generated as the result
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of rotational character of the fluid force: the tangential (or "cross") damping is
the result of Coriolis inertia force, the tangential (or "cross") stiffness is
generated by the relative velocity and radial damping. In addition, the radial
stiffness K, appearing at the main diagonal of the stiffness matrix is now modified
by the centripetal fluid inertia force which appears with the negative sign.

During experimental testing by applying perturbation method [13], the character of
the fluid force expressed by the equation (3) was fully confirmed. For relatively
large clearance-to-radius ratio, the fluid inertia force become significant, and
modifies "damping" and "stiffness" matrices considerably. The resultive radial
stiffness can very easily reach negative values.

Another important conclusion relates to the "cross stiffness" coefficient, the most
important component affecting rotor stability. This term is directly generated by
the linear radial damping D, as the result of rotating character of the damping
force. This term is proportional to the rotative speed w,, i.e., its significance
increases with rotative speed. An immediate conclusion is that an increase of the
bearing damping D will not help to prevent rotor instability as the "cross stiff-
ness" increases proportionally to D. The only help in decreasing the "cross stiff-
ness" term is a modification of the average swirling ratio A. This feature is now
being widely used in "anti-swirling" devices [14, 15].

4. MATHEMATICAL MODEL OF A SYMMETRIC FLEXIBLE SHAFT ROTATING IN ONE RIGID
ANTIFRICTION BEARING AND ONE OIL 360° LUBRICATED CYLINDRICAL BEARING

0i1 whirl and oil whip phenomena are characterized by low frequency, that is why it
seems reasonable to 1imit the rotor model to its lowest bending mode. It is obvious
that the considerations presented below can be applied to more complex rotor model
(including more modes, gyroscopic effect, internal damping, etc.) as well.

The mathematical model representing balance of forces in the symmetric rotor shown
in Fig. 3 is as follows: : gt
R

M2y + 0521 + (K1+K2)zy - Kpzp = mrufe (4)

MoZ, + Mf(iz‘szwRiz‘Azwﬁzz) + [D+¢2(l22|)](22‘jAwR22) + [Kotpa (1221122 + (5)
+ Kazg + Ka(22-21) =0, 233X +Jy1 , 22 = X2 + jya
where M;, M, are rotor generalized (modal) masses, D_ is external generalized
(viscous) damping coefficient, K;, Kz, and Kj are shaft generalized (modal) stiff-
ness coefficients (Ks may also include an external spring stiffness), m and r are

mass and radius of modal unbalance respectively. The bearing fluid dynamic force is
introduced to the equation (5) in the form (3).

The equation (4) presents the classical relationship for an unbalanced symmetric
rotor at its first bending mode. Any classical method of modal reduction can be
applied to obtain the rotor generalized (modal) coefficients. The equation (5)
describes balance of forces, including nonlinear fluid force, acting at the journal.

Radial forces (such as gravity) are balanced by external spring forces and are not
included in the model (4), (5).
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5. SYNCHRONOUS SOLUTION: 1x ROTOR FORCED VIBRATIONS DUE TO UNBALANCE

In this section, the particular solution of equations (4) and (5) will be discussed.
This solution describes rotor synchronous vibrations due to unbalance force and has

the following form: . X
2, = Al @REFI) g < g, d(wgtiaz) (6)

where the amplitudes Ay, A, and phase angles a;, ap, can be found from the following
algebraic equations resulting from (4), (5) and (6):

(K1+K2+Dsij-Mw§)A1eJd1 - KzAzeJaz = mrwﬁ

- . (7)
{Ko*Ka+Karsy (A2 )+ 5[0z (A2) T (1-A) - Mau-Maud(1-1)2}Azel"2-KpA,e1% = 0
Note that the fluid inertia and radial damping carry coefficents 1 - A, which value is
usually slightly higher than 1/2. This signifies that the effective damping is two times
and the fluid inertia effect on synchronous vibrations four times, smaller than their
actual values.

The equations (7) can be solved for any given nonlinear functions ¢y, and s, as
their arguments now become equal to Ap, the journal amplitude of synchronous vibra-
tions. When the nonlinear forces are neglected (y;=y>=0) the equations (7) yield
simple expressions for the amplitudes and phase angles:

mrw3 Komrw?
R K A5\ 2 KoAocosa 27 TR (8)
R R
Jh3+D2uwd Jhg+n3
_ _ tanas - -
o, = arctan ( DSmR/h4) + arctan 1+mrmﬁ/(K2A2cosa2) , as = arctan (~haz/hp) (9)
or, further
mrmﬁ ;
Ay = —=—— J[(h#K3)2+h3 , a; = arctan (-D_wp/hy) + arctan [K3hs/(h3+h3+K,hs)]
JFE0%E * (10)
where hy = h4hg - DDswﬁ(l'A)ng y hg = [hst+Dh4(1-A)]wR (1D
h4 = K1+K2‘M0ﬁ . hs = KQ+K2+K3‘N§[M2+Mf(1'A)2] (12)

When the nonlinear forces are inen in the form (2), then the amplitude A, can be
found as the so1qtion of the following polynomial equation:

Ag(h§+h;) + 2A3(h2h6+h3h7) + A%(h§+h§) - (szTWﬁ)z =0 (13)
where he = B1h4 = wﬁBz(l‘A) » h7 = wR[Bg(l-A)h4+Ble] (14)

The phase ap in this case is slightly modified by the nonlinear force:
) AawR[DsBl+(1-A)h482]+h3
ap = arctan [A§[wﬁ(l-A)DsBz-h4Bl]'h2] (15)

The amplitude A;, and phase a; are given by equations (8) and (9).
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The equation (13) can be solved graphically (Fig..4). The simple graph1c§1 method
reveals important qualitative features of the nonlinear system. It is possible that
three solutions for A, are yielded (Fig. 4a). This corresponds to the well known
nonlinear case [16]. More probable, however, is that only one solution exists. ‘The
nonlinear force causes a reduction of the vibration amplitude A,. Figure 5 gives
some numerical examples of Bodé plots for the rotor synchronous response. An
insensitivity of the response to fluid inertia and journal generalized (modal) mass
is noted.

6. STABILITY OF THE PURE ROTATIONAL MOTION OF THE SHAFT

To investigate the stability of the pure rotational motion of the shaft, assume that
the unbalance force is equal to zero. For the stability analysis, the nonlinear
terms in the equation (5) are neglected, as they are small of the second order.
Stability of the pure rotational motion of the shaft means stability of the zero
solution of the equations (4) and (5) for mr=0, perturbed by small lateral deflec-
tions. The eigenvalue problem with the solution for linearized equations (4), (5)
of the form st st

zy = Eqe N Zp = Ege (18)
leads to the corresponding characteristic equation:

[Mps2 + Mf(s-jAwR)2 + D(s-jAmR) + K0+K3](K1+K2+DSS+M152) + Kz(K1+DSs+M152) =0 (17)

where s is the system eigenvalue, and E,, E; are constants of integration. The
equation (17) can easily be solved numerically. An example is presented in Figure
6. The eigenvalues are given as functions of rotative speed Wp.

After computing several examples, it has been noticed that the modal mass M, and the
fluid inertia M., when not exceeding certain "critical" values, have very little
effect on the eigenvalues. It has also been noticed that one of the eigenvalues has
always the imaginary part proportional to the rotative speed w,, when the latter is
low, and_that it tends to the constant value corresponding to tge rotor natural fre-
quency (K +Kz)/M; when w, increases. The corresponding imaginary part of this
eigenvalue crosses zero J& a specific rotative speed. That is, after this specific
speed, the pure rotational motion of the rotor becomes unstable.

These observations led to an important conclusion about the character of the system
eigenvalues, and to approximate eigenvalue formulas.

The approximate values of three eigenvalues, i.e., three solutions of equation (17) are
as follows (obtained from entensive parametric analysis of numerical solutions to

eq. (17)):

L Kot Kz(Ky=MiA2u2) s o (18)
51 D DUK; *Kz-M A ZwZ) IR
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2,3 ® + JyR1-JRz = (~J-Ry+/RT*RE * jyR+/RI+RZ)/42 19

where R, ® %ii'ﬁz - K3(Ko+K3)/Rs , Rg ® -KQD(J—K-%%Z-MR)/R;,,

R = {[Ko*Ka-Ma(Ky+Ka)/My = M (ITRTFRM-hug)2]2 + D2(JELgf2-hug)2im,

The formulas (18), (19) give approximate eigenvalues of the rotor/bearing model (4),
(5). The imaginary parts of the eigenvalues (18) and (19) represent natural fre-
quencies. The first natural frequency, Im (sy) is close to Aw,. The second natural
frequency, Im (sa,3) is close to the shaft natural frequency * (K +Kz)/M;.

Stronger coupling (high Kz) causes more significant divergence from these
"uncoupled" natural frequencies of the system.

The real part of the eigenvalue (18) predicts the threshold of stability: For

1 K . Ka(KotKa-MaK /M = (8T (20)
wp i ./‘él * 'zr‘of_%“iml Ka+(Ko*Ka-MzKi /M) 1 = “R

the rotor pure rotative motion is stable. For w, > w(ST)the pure rotational motion
becomes unstable. The first term under the radgcal 20), mainly K;/My, is defin-
itely dominant. The second term contains two stiffnesses in sequence, K, and
(Ko*+Ks=MaK,;/M;). Usually the stiffnesses Ko and Kz are small, mass M, is also
small. Connection in sequence with K, (independently of value K;) makes the total
smaller than Ko+K3-MpK;/M;. It is reasonable, therefore, to reduce the expression
for the rotor/bearing system stability threshold to

wg®? = 1 f (21)

R A
For the unstable conditions the vibration amplitude increases exponentially in time

and eventually bearing nonlinear forces become significant causing final Timitation
and stabilization of the vibration amplitude.

The experimental results entirely confirm this result. An increase of the stiffness
Ky (disk mounted on the shaft moved toward the rigid antifriction bearing) causes a
significant increase of the system threshold of stability [17].

7. STABILITY OF THE SYNCHRONOUS SOLUTION

The stability of the synchronous vibrations (6) will be analyzed by applying the
classical perturbation method [16]. Introducing the variational real variables
wi(t), wz(t) (amplitude perturbation) according to the relation

21 = [Aywy (013 CRETID) 7 = pag g (t)1ed WREP2) (22)

the Tinearized variational equations are obtained by substituting into equations (4) and
(5).
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M1(Q1+291ij'w§w1) + (K1+K2)w1-K2w2eJ(“2'“1) =0

Mz(w2+2&2ij-m§w2) + Mf[w2+zijQ2(1-A)-m§w2(1-x)2] +

(23)
+ [Dhp(A2)] D+ uguz (1-0)] + 328820 o, jup (1-1) +
+ [orbn(A)] vz + PB2) wahy + (Katk) Wy = Kowyed (17020 = 0
The solution of the variational equations (23) has the following form
= E, e(st Jth Jog) = E, e(st-ijt-jaz) (24)

where s is the eigenvalue and E1, E, are constants of 1ntegrat1on By introducing
(24) into (23), the characteristic equation is obtained:

[Mas24M (s-jhug)2 + (Dwip)(s=jhug) + bpAzdup(1-A) +

+ K0+¢1+¢iA2+K31(K1+K2+Dss+M152) + K2(K1+Dss+M152) =0

disy ,2(As)
dhy -

Stability of the synchronous solution (6) is assured if all eigenvalues of the equa-
tions (23) have non-positive real parts.

(25)

where §; and y, are functions of A, and yi,2 =

The characteristic equation (25) differs from the characteristic equation (17) by
the nonlinear terms which cause an apparent increase of the bearing radial damping,
“cross stiffness" effect, and radial stiffness. The threshold of stability calcu-
lated the same way as previously, has now the following form (M; is neglected):

(sT) - 1 s —
® MM [1+x(A2)] o+ 2o+ Hb1Az (26)
where x(Az) = =YbA,(1/A-1)/(D+yz). -

With increasing eccentricity A, an apparent decrease of the average swirling ratioc A
is noticed, as ¥(A;) has a negative sign.

More interesting is, however, the modification of the instability threshold due to
increase of stiffness from (Ko+Ka) in (20) to (Ko+KsHpi+piAz) in (26). The last
expression includes the amplitude of synchronous vibration A, which is a function of

rotative speed w Following (20) and (26), the criterion of stability can be
written in the foﬁh ’

Ko+K 1A 28
S A O )

and solved graphically (Fig. 7). The graphical solution is very effective in show-
ing qualitative features of the rotor dynamic behavior. Having the amplitude/
rotative speed relationship from equation (8) or (13) (lower graph of Fig. 7) and
having the plot of the radical (28) versus amplitude A, which includes the nonlinear
function ¢; of A, (left-hand side graph), the graph of the radical from the right-
hand side of the inequality (28) versus rotative speed w, can be built up as the
small arrows indicate (right side plot). The left-hand s1d% of the inequality (28)
versus w, is a straight Tine Aw,/M; slightly modified by the factor x(A;). The
regions %f stability are foundzat intersections of the corresponding plots on the
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upper right-hand side graph. It clearly shows that the synchroncus solution is
stable for rotative speeds below the first threshold of stability, which differs very
little from the stability threshold (21), and that they are stable in the resonant
speed region.

It is easily noticed that higher unbalance will increase stability region for the
synchronous vibrations around the resonant speed J(K;+K3z)/M; (Fig. 8).

The series of experiments with a balanced and unbalanced rotor confirm this analyti-

cal prediction; higher unbalance causes wider interval of rotative speeds where
synchronous vibrations are stable (Figs. 9 through 11).

8. ROTOR SELF-EXCITED VIBRATIONS: OIL WHIRL AND OIL WHIP
For the case of the absence of imbalance, the equations (4), (5) have a particular
solution describing self-excited vibrations (oil whirl and oil whip).
2, = G WEB) o g edut (29)

where Gy, G, are corresponding constant amplitudes, B is the relative phase angle,
and w is the self-excited vibration frequency.

By introducing (29) into (4) and (5), the algebraic equations for calculating G,,
G2, B, and w are obtained:

{-Mzwz-Mf(w-AwR)z + j[D+¢2(Gg)](w‘AwR) + Koty (Gp) + Ks](K1+K2‘M1W2+Dst) +

(30)
+ Kz(K1+Dsjw-M1m2) =0
D_w
K
Gy = 262 . B = arctan m (31L)

J(Kl"‘Kz"lez) + Dng

The real and imaginary parts of the equation (30) provide relationships for obtain-
ing Gz and w, for each case of the nonlinear functions ¢;(Gz) and Y2(Gz):

(K1+K2-M1w2)(K1-M1m2) + Dng

¥1(Gz) = M2w2+Mf(w-AwR)2-KO-K3-K2 (K1+K2-Miw2)2 - Dng = ¢q(w) (32)
K§Dsw
b2(82) = 0 Ty + 0] = () (33

The frequency w is yielded from the equatioh

Yo {17101 (W1} = 02(w) (34)
where §;”! is the inverse function (32); Gy = ¥y 1o (w)].
For example, in case of the "parabolic" nonlinear functions (2) and small damping DS
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the frequency equation (34) has the following form:
(K1+K2-M1w2)(w-AwR){(K1+K2-M1w2)[%%(K0+K3-M2m2-Mf(w-AmR)2)-D] +

B (35)
+ B‘?KZ(Kl-lez)} = DSLUKE )
It yields immediately three important real solutions for the frequency:
Wy = NDR (36)
~ 4+ | - (37)
W,z @ J(Ki+Kp)/My + 0551/[M1Bz(1‘AwR/4ZK1+K257M15] = £J(K;+Kz)/M;

which are close to the linear rotor/bearing system "whirl" and "whip" natural fre-
quencies at the threshold of stability (21). The remaining solutions can be also
easily obtained from equation (35). For the small shaft damping D_ the similar
consideration can be extended to. any case of nonlinear functions wl,swz: in (35)
the ratio By/B; should be replaced by the ratio ¥,(Gy)/¥1(G2). Three frequency
solutions (36), (37) exist, therefore, independently of nonlinearities and independ-
ently of journal mass and fluid inertia.

The corresponding amplitude G, of the self-excited vibrations can be caiculated from
(32). For example, the "parabolic" nonlinearity (2) yields:

., . 1 j 2 Ki-MiA*up
Whirl amplitude: Gzlw=AmR o M2A2wB-Ko=Ks-Ke KI;K;:EIXIEE (38)

Whip amplitude: 62|
w=y (K1 +Ko

% = M (Ko ) My M (VTR PR 7My-hug )2 = Ko=Ka=Ks
(39)

The expression under the radical (38) should be positive, therefore, the self-

excited vibrations with the whirl amplitude (38) exist only for the limited range of
the rotative speed (M, neglected):

1 K GG
XA M RatKaskgy S ¥R S Y(KFRe)/My/A (40)

The left-hand side of the inequality (40) represents the threshold of stability
(20), the right-hand side term separates the whirl from the whip.

The similar reason causes that the self-excited vibrations with the whip amplitude
(39) exist for the following rotative speed range:

T
w23 {%1—"2 + 3 TRy Ra=(Ky Ry Wi /My I7M (41)

From equations (31) and (32) the corresponding whirl and whip amplitudes and phases
of the rotor can be obtained. For example for whip frequency (37), in case of
“parabolic" nonlinearities (2) they are as follows:
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G, = Gy K2 (42)
D_J{Ki7Kz)/M; {B3/[Ba(JTRiFRg)Mr-Awg) ]2 + 1
U)'-'«RKI'*'KZ ;;M S R

B = arctan [Bg(JZK1+K257M1-AwR)/BI] (43)

During whip, the shaft vibrates at its resonant conditions, the whip amplitude is
controlled mainly by the shaft damping Ds and the nonlinear fluid forces.

The phase between the rotor and journal at whip vibrations is controlled by non-
linear forces in the bearing. It was experimentally verified that during both oil
whirl and oil whip, the rotor and journal vibrate nearly in phase (Fig. 12). This
may serve as an indication concerning the values of nonlinear forces ¥, and Ys.

9. DISCUSSION OF RESULTS

In this paper, a simple mathematical model of a symmetric shaft rotating in one
rigid and one 360° lubricated bearing is proposed. The model yields results which
stand in very good agreement with the experimentally observed rotor dynamic phenom-
ena concerning stability, thresholds, and the self-excited vibrations known as oil
whirl and oil whip.

The rotor in the model is represented by the generalized (modal) parameters of its
first bending mode. These parameters can be analytically obtained by applying any
classical method of modal reduction. The fluid force acting at the journal is
represented in the model by the nonlinear expression based on rotating character of
this force. The 1latter approach yields the bearing coefficients in an "inter-
related" form: the tangential ("cross") stiffness is a product of the relative vel-
ocity and radial damping, the tangential damping results from Coriolis acceleration,
the radial stiffness is reduced due to centripetal acceleration and fluid inertia.

The fluid nonlinear force is introduced in a very general form, where the non-
linearity is related to the journal radial displacement (eccentricity in the journal
bearing). The nonlinear character of the fluid stiffness force and especially fluid
damping force is well known. This nonlinearity has a “hard" character: the forces
increase with eccentricity. Actually they grow to infinity when the journal touches
the bearing wall. Since, in this paper, low eccentricity ratios were considered
only (to justify the symmetric character of the rotor model), an example of the
fluid nonlinear forces was discussed: the first terms of the Fourier expansion of
any nonlinear function representing the fluid force.*

The results obtained from the analysis of the rotor model and concerning the rotor,
synchronous vibrations due to imbalance, and self-excited vibrations known as "oil
whirl" and "oil whip" very well reflect the observed rotor dynamical behavior.

The classical eigenvalue problem yields three important eigenvalues of the rotor/

bearing system. The first eigenvalue has the imaginary part (natural frequency)
close to Awp and corresponds to oil whirl frequency. The real part of this eigen-
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value predicts the threshold of stability (the rotative speed at which the pure
rotational motion or 1x synchronous vibrations of an unbalanced rotor become
unstable). This threshold of stability is determined by the rotegT) mass and its
partial stiffness, as well as the oil average swirling ratio (wR = JK./ML/A
expression (21)). The latter result was noticed in the fifties by Poritsky [18] and
discussed by Boeker and Sternlicht [19]. Since then, this seems to have been
forgotten for 30 years.

The second and third eigenvalue of the rotor/bearing system have the imaginary part
close to the rotor natural frequency (£/(K;+K;)/M;) of the first bending mode. The
latter is referred to as "whip frequency".

The model yields the self-excited vibrations (known as oil whirl and oil whip) as a
particular solution. The frequencies of oil whirl and oil whip are very close to
the natural frequencies of the linear system. The model permits evaluation of the
amplitudes and relative, journal/disk phase angles of these self-excited vibrations.

The most important and new (to the author's knowledge) result presented in this
paper concerns the analytical evaluation of the stability of the synchronous vibra-
tions of the rotor and relationship between the width of the stability region and
the amount of the rotor imbalance. This result is yielded from the classical
investigation of stability through equations in variations. The bearing nonlinear
force, increasing with rotor radial deflection causes an increase of the journal
supporting radial stiffness force which is directly related to the actual synchro-
nous vibration amplitude. The increased radial stiffness affects the threshold of
stability. The synchronous vibration amplitude varies with the rotative speed, and
in the first balance resonance region of speeds the effect of stable synchronous
vibrations is observed. Two additional thresholds of stability are noted. The
width of this region depends directly on the amount of imbalance in the rotating
system. A simple graphical method (Figs. 7 and 8) explains qualitatively this
feature. The expressions (26) and (28) give the analytical relationships for these
additional thresholds of stability.

In the rotor/bearing system analysis, as well as in experimental testing, rather
small effect of the bearing fluid inertia has been noted. The fluid inertia has a
negligible influence on the synchronous vibrations, thresholds of stability, natural
frequencies, and frequencies of the self-excited vibrations. The journal general-
ized (modal) mass is also usually relatively small. These aspects led to the con-
clusion regarding further simplifications of the rotor/bearing model to the one
and a half degree of freedom system. The fluid radial damping force which is pro-
portional to the relative journal velocity is definitely dominant fluid force in
the bearing, and it determines the order of the equation (5), as the forces of
inertia Mf and M, are negligible.

There is still no clear picture of what affects the fluid average swirling ratio A.
It has been assumed in this paper that A is constant. However, during experimental
testing some variations of value of A have been noticed. This aspect is being
studied and requires further investigation.

¥ FTuid force 1s often modeled proportional to (1-e2) n’ where e is the eccentricity
ratio (journal radial displacement |z,| to radial clearance), n is a number (usually
1/2, 1, 3/2, 2, 5/2, or 3 ). In the first approximation (1-e2) " = 1 + 2ne2, which
in turn, is proportional to the example forces (2) considered in this paper.
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SYMBOLS

Ay, A Amplitudes of synchronous vibrations of the rotor and journal
respectively
B1, B2 Coefficients of bearing nonlinear "parabolic" force (2)
D, Ko, Mf Bearing fluid radial damping, stiffness, and inertia coefficients
Ds Shaft external damping coefficient
Ei, E2 Constants of integration
F Bearing fluid force
Gy, 32_ Amplitudes of the rotor and journal self-excited vibrations
Jj=4-1
Ki, K2, Ka Rotor modal stiffness coefficients
m, r Mass and radius of imbalance respectively
My, My Rotor and journal modal masses respectively
S, S1, S2, S3 Eigenvalues
wi(t), wa(t) Variational variables for the synchronous vibration/stability
investigation
Z=x+]Jy, Zo=Xo+jys Journal radial displacement x~horizontal, y-vertical (fixed
coordinates)
21 = Xptjy: Rotor radial displacement (x;-horizontal, y,-vertical)
z, = xr+jyr Journal radial displacement (rotating coordinates)
ay, dg Rotor and journal phase of the synchronous vibrations
Phase of rotor/journal self-excited vibrations
A Fluid average swirling ratio
Y1, Yo Bearing fluid nonlinear functions of journal radial displacement
¥, P Derivatives of ¥;, ¥ in respect to radial displacement
correspondingly
w Circular frequency of the rotor self-excited vibrations
wp Rotative speed
wéST) Threshold of stability (rotative speed).
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Figure 1. - Cascade spectrum of rotor vibrational response measured at oil bearing. Spectrum
indicates regions of synchronous (1x) vibrations due to unbalance, oil whirl (=1/2x), and oil
whip with constant frequency close to first balance resonance (slightly lower). (a) Orbit display
of synchronous vibrations, (b) oil whirl orbit, (c) oil whip orbit (Ké ~ keyphasor pulse
indicating relationship with rotative speed frequency).
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Figure 3. - Model of symmetric rotor in one antifriction and one oil bearing.
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(a) Case 2b2 < -ﬁ]_b; : three amplitudes A2 yielded.

(b) case b, > -‘/3b1b3: one amplitude A, exists.

Figure 4. - Graphical solution of equation (13) (notation: b, = h2 + h2 b, = h,h

A 1= hg * Dys by = hohg + hoh,,
bzh +h).
3 = My +hy

172



0
.+M, = 0,009
M,+M, = Oto 3
— 3 w0t
a
g
w =T |
3 My +M, = 0, 14 be=s?
s DISK (a1) :
— JournaL (a3)
-2n | | |
) 1 2 3 a
ROTATIVE SPEED w, [RPM X 1000]
s DISK (A4 ) ' - s
M, = 0.0039 '1bs-s2/in
JoumnaL (Az) D'= 1.2 1b-s/in
30 . Ds = 0.02 1b-s/in
[ Mz+Mo=0.l4'&.=u;4 Ki = 137 1b/in
q Ko = 88 1b/in
s Ko+K3 = 12 1b/in
- = 10-5 2
Wl MM = 0.009 My = 107° 1b-s
E Mz+M,=bxo A=0.42
g 3-10 hgale
< n
10—
|

]
o 1 2 3 4

ROTATIVE SPEED w, {RPM X 1000}

Figure 5. - Phase and amplitude of rotor and journal synchronous vibrations (6) veérsus rotative
speed. Note a significant insensitivity to fluid inertia and journal generalized mass M,.
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Figure 7. - Stability chart for rotor synchronous vibrations due to unbalance.
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Figure 12. - Vertical transducer signals of journal and rotor vibrations during oil whip.
Oscilloscope display in XY mode indicates nearly in-phase vibrations.
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